NUMERICAL ANALYSIS Assignment -1 (week 1) Total Marks - 25 Posted on - 28/7/2017 (Friday);

To be submitted on or before - 6/8/2017 (Sunday), 23.59 hours.

Problems on

- Approximation of f(x) using Taylor's theorem with Lagrange form of remainder
- Absolute and Relative error

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem **which you will have to show** in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

 Let f(x) = √x + 1. Use the third degree Taylor polynomial p₃(x) at f(x) to approximate √0.75. Find the absolute error. Fill in the blanks: (a) If p₃(x) = A + Bx + Cx² + Dx³, then 	bout $x = 0$ of
$A = _$	
<i>B</i> =	
C =	
<i>D</i> =	
(b) $p_3(-0.25) = $	
(c) $ \text{error} = p_3(-0.25) - \sqrt{0.75} \simeq $	(6 marks)

Show your work for the solution of problem 1 in the space provided below.

2. Let R₄(x) be the remainder term of the Lagrange form in the approximation of e^x by the Taylor polynomial p₄(x) of degree 4, about x = 0. Estimate the error in approximating e^{-0.5} by p₄(-0.5). Use your calculator to determine the actual absolute arror for the estimate p₄(-0.5) of e^{-0.5}. Fill in the blanks:

(a)|R₄(-0.5)| ≤ _______
(b) the absolute error = |p₄(-0.5) - e^{-0.5}| ≃ _______. (4 marks)

Show your work for the solution of problem 2 in the space provided below.

3. A linear interpolation is used to estimate f(11.1) where f(x) is known at a set of equally spaced points as given below:

x	10	11	12
y	64	65	69

Obtain the estimate of $f(x)$ at $x = 11.1$.
Fill in the blank:
$f(11.1) \simeq p_1(11.1) =$

(2 marks)

Show your work for the solution of problem 3 in the space provided below.

4. Eestimate ln(0.54) using Newton's forward difference interpolation polynomial p_4 for the data

x	0.4	0.5	0.6	0.7	0.8
f(x)	-0.916291	-0.693147	-0.510826	-0.356675	-0.223144
Fill in the blanks:					
(a) The fourth order forward difference $\triangle^4 f(x_0) =$					

(b) $ln(0.54) \simeq p_4(0.54) =$ _____. (8 marks)

Show your work for the solution of problem 4 in the space provided below.

5.	If $x = 0.3721478693$ and $y = 0.3720230572$, what is the relative error in the com-
	putation of $x - y$ using five decimal digits of accuracy.
	Fill in the blanks:
	(a) $x - y = $
	(b) If x and y are rounded to five decimal digits x^* and y^* respectively, then
	$x^* = \underline{\qquad},$
	$y^* = $,
	$x^* - y^* = $

 $\begin{array}{l} x - y = \underline{\qquad}, \\ \text{(c) Relative error} = \underline{\qquad}. \end{array}$

(5 marks)

Show your work for the solution of problem 5 in the space provided below.